

available at www.sciencedirect.com

Place of death and hospital care for children who died of cancer in England, 1999–2006

Anjali Shah ^{a,*}, Nicole Diggens ^a, Charles Stiller ^a, Dermot Murphy ^b, Jane Passmore ^a, Michael F.G. Murphy ^a

ARTICLEINFO

Article history:
Received 10 February 2011
Received in revised form 23 March
2011
Accepted 25 March 2011
Available online 29 April 2011

Keywords: Palliative care Children Cancer

ABSTRACT

Aim: To describe patterns of hospital care and to evaluate factors influencing place of death for children who died after a diagnosis of cancer in England during 1999–2006.

Materials and methods: Registrations of children on the National Registry of Childhood Tumours (NRCT) who were diagnosed with cancer and died during 1999–2006 in England were linked to the Hospital Episode Statistics (HES) and to death certificates. Multivariable logistic modelling was used to assess factors that influence dying at home or in hospital. Results: 1864 (96%) of children with cancer registrations were linked to HES records. The validation of hospital as a place of death and ethnicity between data sources was good, although anomalies within HES data exist. Similar proportions of children are dying at home (45%) and in hospital (47%), and the percentage dying in a hospice or care home increased from 2% to 10%. Of the children who died in hospital, 74% were admitted as emergencies or as a transfer from another hospital. Greater proportions of children diagnosed with a leukaemia or lymphoma, those dying within six months of diagnosis, Asian and Black children, those from a deprived background, and those not treated in a CCLG centre died in a hospital.

Conclusions: Patterns of hospital care varied considerably by type of cancer, death within six months of diagnosis, ethnicity and deprivation. Further research is required to elucidate explanations for these patterns and to evaluate methods to increase the proportion of children dying at home who wish to do so.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cancer remains an important cause of death among children, despite striking improvements in survival and cure. Palliative medicine has developed considerably over the last 20 years, and an increasing number of hospices for children have been opened. Palliative care services for children are acknowledged to vary in availability and quality across England. The Department of Health has recommended a 'total

approach to palliative care for children and young people and their families, which embraces physical, emotional, social and spiritual elements'. The majority of young children with cancer would choose to die at home, rather than in a hospital, when circumstances allow.

This study seeks to describe patterns of hospital care from the time of diagnosis to death, and to evaluate the factors affecting place of death for children who were diagnosed with cancer in England and who died during 1999–2006.

^a Childhood Cancer Research Group, Richards Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7LG, UK

^b The Royal Hospital for Sick Children, Yorkhill, Glasgow G3 8SJ, UK

^{*} Corresponding author: Tel.: +44 (0)1865 617 795; fax: +44 (0)1865 617 801. E-mail address: anjali.shah@ccrg.ox.ac.uk (A. Shah). 0959-8049/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.ejca.2011.03.030

2. Materials and methods

A combination of cancer registry, Hospital Episode Statistics (HES) and death certificate data have been used for this study of children (<15 years) who were diagnosed with cancer and who died under the age of 20 years in England during 1999–2006

The National Registry of Childhood Tumours (NRCT) based at the Childhood Cancer Research Group (CCRG) is a population-based registry of malignant neoplasms and benign brain tumours diagnosed at ages 0-14 years since 1962. CCRG has received information on an estimated 97% of all cases of childhood cancer since 1971. The Children's Cancer and Leukaemia Group (CCLG, formerly the UK Children's Cancer Study Group) have notified CCRG of all children registered and treated by its members since 1977. CCLG notifications are now received for 93% of all the children included in the NRCT. Details of all children who survive for at least three years after diagnosis are sent to the NHS Central Registers (NHSCR) in Southport and Edinburgh. These individuals are 'flagged' and the NRCT is notified if and when NHSCR receives a death certificate relating to these individuals. Less than 2% of cases have been lost to follow-up since 1981.

NRCT data have been linked to HES data for children with cancer by NHS number, sex, date of birth and postcode. Each time a patient sees a doctor in a hospital, whether as an inpatient or a day case, a record or 'episode' is created and added to the HES database. The record contains patient details, diagnosis, treatment and lengths of hospital stay. Outpatient data are only available from 2003 and are not included here. Radiotherapy data has not been collected in HES.

Place of death obtained from death certificates was categorised as home, hospital or hospice/care home and evaluated by age at diagnosis and death, sex, type of cancer, ethnicity, deprivation, treatment at a CCLG centre and clinical trial status. The few children who died of other causes such as road traffic accidents or other medical conditions were excluded from the study (n = 13). The third edition of the International Classification of Childhood Cancer⁸ was used to classify type of cancer, with germ cell tumours of the central nervous system (CNS) being included with brain and spinal tumours. If a child was diagnosed with a subsequent primary tumour, their death was ascribed to the last malignancy. Place of death recorded as hospital on a death certificate was validated using HES data. Ethnicity as recorded on HES was validated between records submitted to HES from different NHS Trusts and between records from CCLG centres. Ethnicity as recorded on CCLG records was used when no other data was available. Deprivation was assigned using the income domain of the Index of Multiple Deprivation linked to the super output area of a patient's postcode at death.9

Multivariable logistic modelling was used to compare dying at home with dying in hospital by potential explanatory factors, with those who died in a hospice or a care home being excluded from analysis. Chi-squared tests were used to evaluate trends and patterns. The data were analysed using STATA version 11.1.10

3. Ethics

The CCRG is a member of the UK Association of Cancer Registries, which permits the holding and processing of individual data on children diagnosed with cancer. This is currently sanctioned by Section 251 of the Health and Social Care Act (2008) without individual consent. Ethical approval for epidemiological research using NRCT data has also been approved by the Oxford NHS Research Ethics committee (Ref: 07/Q1606/54).

4. Results

Of 10,548 children who were diagnosed with cancer during 1999–2006 1947 also died during the same period. It was possible to link HES records to cancer registrations for 1864 (96%) of these children. About 134 (14%) children who died in hospital did not have their death recorded in a HES episode, and looking at available records for two large specialist centres (n = 15), it seemed that about half died in intensive care units. 14 (1%) children who were recorded in HES as dying in hospital, had death certificates recording home or hospice as place of death. Ethnicity from different sources was validated and agreement reached for 84% of children. Ethnicity as recorded by CCLG was used for 12% of children when this was the only data source. The record of ethnicity by CCLG was found to be 99% accurate when compared with HES.

Of the children who had linked HES episodes, 47% died in hospital and 45% at home (Table 1). Similar proportions of boys and girls died at home, hospital and in a hospice and a similar proportion of patients who participated in a clinical trial died at home or in hospital. A decreasing proportion of children died in hospital by increasing age at death, which is attributable to many older children diagnosed with brain or spinal tumours dying at home or in a hospice. Death in hospital was more likely for children diagnosed with leukaemias and lymphomas than children diagnosed with solid tumours. 70% of Asian and Black children died in hospital, compared to 42% of white children. Increasing deprivation was associated with an increasing likelihood of a child dying in hospital. Useful additional information on the reasons for 47% of children dying in hospital was not available within death certificates or HES data, as the original malignancy was most often reported as cause.

The proportion of children dying in a hospice increased significantly by year of diagnosis from 2% to 10% during 1999–2006. Of the 150 children who died in a hospice 57% were diagnosed with a brain or spinal tumour, 11% with a bone tumour and only 9% with a leukaemia; 79% were white and no pattern was evident by deprivation. 31 different hospices were a place of death for these children, with four each being the place of death for more than 10 of the children studied.

Within 6 months of diagnosis, 543 children died, of whom 70% died in hospital, 54% were under five years of age at death and the majority were not included in a trial (69%). Many of these children had been diagnosed with a brain or spinal tumour (43%) and with a leukaemia (23%). In those surviving

	Place of death						Total %	
	Died at	home %	Died in l	nospital %	Died in hosp	ice/care home %		
Total linked to HES records	847	45	867	47	150	8	1864	100
Sex								
Male	471	46	467	46	82	8	1020	55
Female	376	45	400	47	68	8	844	45
Age at diagnosis								
<1 year	90	42	110	51	15	7	215	12
1–4 years	268	44	295	48	47	8	610	33
5–9 years	230	48	202	42	52	11	484	26
10–14 years	259	47	260	47	36	6	555	30
Age at death								
<1 year	30	28	65	61	11	10	106	6
1–4 years	217	40	286	53	34	6	537	29
5–9 years	267	50	216	40	56	10	539	29
10–14 years	237	47	232	46	34	7	503	27
15–19 years	96	54	68	38	15	8	179	10
Type of cancer								
Brain and spinal tumours	311	49	243	38	86	13	640	34
All leukaemias	129	28	313	69	14	3	456	24
ALL	76	29	179	68	8	3	236	13
AML	42	30	94	67	4	3	140	8
Soft tissue sarcomas	102	57	66	37	12	7	180	10
Sympathetic nervous system tumours	104	59	65	37	6	3	175	9
Bone tumours	80	59	39	29	16	12	135	7
Lymphomas	34	30	76	68	2	2	112	6
Renal tumours	40	56	25	35	6	9	71	4
Hepatic tumours	21	55	12	32	5	13	38	2
Epithelial tumours	21	57	13	35	3	8	37	2
Germ cell and gonadal tumours	3	23	10	77	0	0	13	1
Other and unspecified malignant	2	29	5	71	0	0	7	0
neoplasm								
Died within six months of diagnosis	131	24	381	70	31	6	543	29
Ethnicity								
White	737	50	625	42	126	9	1488	80
South Asian	49	30	110	66	7	4	166	9
Black	11	17	48	76	4	6	63	3
Other	30	41	34	47	9	12	73	4
Unknown/missing	20	27	50	68	4	5	74	4
Index of multiple deprivation income domain	quintile							
Affluent	245	51	197	41	38	8	480	26
2	123	49	105	42	24	10	252	14
3	158	50	134	42	27	8	319	17
4	159	44	178	49	27	7	364	20
Deprived	162	36	253	56	34	8	449	24
Registered at a CCLG centre								
Yes	830	47	804	45	147	8	1781	96
No	17	20	63	76	3	4	83	4
Clinical trial status								
Yes	404	47	414	48	50	6	868	47
No	443	44	453	45	100	10	996	

longer than six months, the majority were included in a clinical trial (53%) and died at home (54%).

Among the few children (n = 83) who were not seen at a CCLG centre 76% died in hospital and only 37% of these children were white. Many of these children were diagnosed with a brain or spinal tumour (42%), were aged over 10 years at diagnosis (34%) and died within six months of diagnosis (60%).

At the univariate level, age at death, type of cancer, dying within six months of diagnosis, ethnicity, socio-economic status and whether treated at a CCLG centre were all significantly associated with dying at home or hospital (P < 0.001) (Table 2). In the multivariable analysis, all of these factors continued to have a significant association with place of death, except age at death, which was no longer important

Table 2 – Univariate and multivariable analysis of place of death (home vs hospital) of childhood cancer patients who were diagnosed and died during 1999–2006, in England.

	Univariate analysis			Multivariable analysis			
	Odds ratio	95%	% CI	Odds ratio	95%	6 CI	P value
Sex							
Male Female	1.00 0.93	0.77	1 10				
	0.93	0.77	1.13				
Age at diagnosis							
<1 year	1.00						
1–4 years	1.11	0.80	1.54				
5–9 years	1.39	0.99	1.95				
10–14 years	1.22	0.88	1.69				
Age at death							
<1 year	1.00						
1–4 years	1.64	1.03	2.62				
5–9 years	2.68	1.68	4.28				
10–14 years	2.21	1.38	3.54				
15–19 years	3.06	1.80	5.21				
Type of cancer							
Leukaemia	1.00			1.00			
Lymphomas	1.09	0.69	1.71	1.45	0.89	2.36	0.139
Brain and spinal tumours	3.11	2.38	4.05	4.23	3.16	5.66	<0.001
Other solid tumours	3.85	2.96	5.01	3.96	3.00	5.24	<0.001
		2.50	5.01	3.50	3.00	3.21	(0.001
Died within six months of diagnosis							
Yes	1.00			1.00			
No	4.28	3.41	5.39	4.48	3.48	5.77	<0.001
Ethnicity							
White	1.00			1.00			
South Asian	0.35	0.24	0.52	0.45	0.29	0.69	< 0.001
Black	0.22	0.11	0.44	0.20	0.10	0.43	< 0.001
Other	0.71	0.42	1.21	0.82	0.45	1.47	0.503
Unknown/missing	0.48	0.36	0.65	0.81	0.58	1.13	0.219
Index of multiple deprivation incom	e domain auintile						
Affluent	1.00			1.00			
2	0.94	0.68	1.30	0.99	0.69	1.42	0.952
3	0.95	0.70	1.28	0.93	0.67	1.30	0.679
4	0.72	0.54	0.95	0.84	0.61	1.15	0.281
Deprived	0.52	0.39	0.55	0.60	0.44	0.82	0.001
	0.02	0.05	0.00	0.00	0.11	0.02	3.332
Registered at a CCLG centre	4.00			4.00			
Yes	1.00	0.45	0.45	1.00	0.00	0.66	0.004
No	0.26	0.15	0.45	0.36	0.20	0.66	0.001
Clinical trial status							
Yes	1.00						
No	1.00	0.83	1.21				

when dying within six months of diagnosis was included in the model. More children from ethnic minorities were classified as deprived, but both these variables still had an independent association with dying in hospital.

Short duration of survival (deaths between 3 and 18 months from diagnosis) was a significant factor associated with dying in hospital rather than at home in the multivariable analyses, regardless of the cut point used (data not shown). The odds of dying in hospital decreased from 6.83 for deaths within 3 months to 2.05 for deaths within 18 months. The impact of death within six months has been presented because almost all patients would be receiving treatment during this period after diagnosis.

The average time between diagnosis and death for all children studied was 481 days, of which about a fifth were spent in hospital. The average number of hospital episodes and bed days from diagnosis to death varied by type of cancer and place of death (Table 3). Children with leukaemia had longer time between diagnosis and death and more bed days in hospital than children with brain and spinal tumours or other solid tumours. Children with AML on average had more bed days (>150 days) than other children, regardless of place of death

Children who died in hospital had more bed days, particularly in the six months prior to death. Unsurprisingly, their last hospital episode was much longer than the last hospital

	Place of death						
	Died at home	Died in h	nospital	Died in a ho	spice/care home		
Average number of hospital episode	, ,						
All cancers	39	30		37			
All leukaemias	58	39		54			
ALL	69	45		64			
AML	41	28		50			
ymphomas	52	22		20			
rain and spinal tumours	23	19		26			
ther solid tumours	45	32		51			
werage time between diagnosis an	ıd death (days)						
all cancers	571	377		581			
All leukaemias	640	457		673			
ALL	740	507		697			
AML	486	390		758			
ymphomas	570	296		206			
Brain and spinal tumours	476	303		452			
Other solid tumours	646	303 374		801			
				801			
Average bed days spent in hospital All cancers	•	eath 111		98			
All leukaemias	105 185	133		98 172			
ALL	182	116		105			
AML _	193	153		294			
ymphomas	137	97		107			
Brain and spinal tumours	58	78		75			
Other solid tumours	113	120		117			
Average bed days in hospital in the	e 6 months prior to de	eath					
All cancers	32	55		31			
All leukaemias	81	64		62			
ALL	87	58		42			
AML	74	72		62			
ymphomas	60	63		60			
Brain and spinal tumours	18	44		31			
Other solid tumours	25	54		20			
Average duration of last hospital a All cancers	5	20		9			
All leukaemias	9	22		26			
ALL	8	19		16			
AML	10	23		20			
•	_						
ymphomas	5	23		28			
Brain and spinal tumours	5	18		9			
Other solid tumours	3	17		3			
werage time to death following las		37/4		46			
All cancers	51	N/A		46			
All leukaemias	15	N/A		26			
ALL	14	N/A		41			
AML	19	N/A		4			
.ymphomas	14	N/A		5			
Brain and spinal tumours	74	N/A		47			
Other solid tumours	47	N/A		52			
ype of last hospital admission							
lective	415	49 218	25	63	42		
mergency		46 505	58	78	52		
Transfer between hospitals	40	5 138	16	9	6		
Other	0	0 4	<1	0	0		
Jnknown	6	1 2	<1	0	0		

episode for children who died at home. After their last hospital admission, on average, children who died in a hospice lived another 46 days and children who died at home lived another 51 days. Of the children who died in hospital, 58%

were admitted as emergencies and 16% were transferred between hospitals for their last admission. For about half of the children who died in a hospice or at home, their last hospital admission was an emergency.

5. Discussion

The vast majority of children who were diagnosed and died from cancer during 1999–2006 in England have had their cancer registration linked to hospital records. The anomaly of some deaths in hospital not being registered within HES data illustrates that caution is required when interpreting findings, especially given that the purpose of collecting HES data is for funding rather than research. We have made the assumption that we were able to link all hospital records for each patient, although partial matches were visually inspected to improve the quality of linkage. It was possible to validate ethnicity for most patients, providing some reassurance of the quality of hospital data available. Ethnicity as recorded by CCLG centres is even more complete and of higher quality than HES.

A limitation of the study was that it only included children who were diagnosed and who died during 1999–2006, which has resulted in an over-representation of short-term survivors. A maximum survival time of just less than eight years was possible. Death certificates were not available for 2007–2008, but we estimate an additional 340 children died in these two years who had been diagnosed during 1999–2006. A second limitation of the study is that we do not have data on the proportion of patients with whom palliative care and place of death was discussed, whether preferences were stated or the reasons for death in hospital.

Among children dying from cancer during 1995–1999 in England and Wales, and during 2004–2008 in Scotland, only 3% died in a hospice. ^{11,12} During 1999–2006 in England a child dying in a hospice was still rare, although the proportion increased from 2% to 10%. An explanation for this may be that whilst the number of hospices has increased, the services they offer may be directed towards offering respite and bereavement care rather than residential palliative care. Similar proportions of teenagers and younger children died in a hospice, demonstrating that this option is available to young people of all ages.

Of the children who die in hospital, 74% were admitted as emergencies or as a transfer from another hospital, which may relate to care being shared between hospitals, absence of an intensive care unit at a hospital or if a family no longer has the resources for a child to die at home.

Similar findings with the study of children dying of cancer in England and Wales during 1995-1999 and in Yorkshire during 1990-2005 were that children who were diagnosed with a leukaemia or a lymphoma were more likely to die in hospital and the majority of children dying in a hospice had been diagnosed with a brain or spinal tumour. 11,13 Children with a leukaemia or a lymphoma may often die whilst still receiving curative treatment or being treated for a relapse, and therefore, it is unsurprising that hospitals provide more care for them. 14 These children often undergo bone marrow transplantation, which in itself is associated with a high mortality rate. Also, a hospice requires adequate facilities and staff with appropriate skills to be able to provide transfusions. In contrast, children who have a brain or spinal tumour are likely to be identified as requiring palliative care sooner than children with other malignancies, and it is relatively easy for their neurological symptoms to be managed in a hospice or at home.

Death within six months of diagnosis was an important factor associated with more deaths in hospital. A possible explanation for this is that these children had acute conditions, and little time was available to access specialist palliative care services or to consider place of death, whilst curative treatment was being attempted. Over 90% of these children were treated in CCLG centres, and a lower proportion of these children being involved in clinical trials probably relates to trials not running for their diagnoses.

The pattern of place of death with registration or not at a CCLG centre may be explained by health professionals at CCLG centres being more likely to have the systems and a team approach to facilitating death at home between patient, family, outreach nursing teams and GPs.¹⁵

That a substantial proportion of children from ethnic minorities or deprived backgrounds are dying in hospital rather than at home or in a hospice is likely to be a complex issue. Possible explanations for fewer deaths at home include the level of understanding and acceptance of the concept of palliative care amongst family members from ethnic minorities may be low, ¹⁶ that ethnicity and financial status affects access to a range of services, and a belief may exist amongst health professionals and/or patient's families that they may not be able to cope with a child dying at home.

Explanations can be given for the association between place of death and type of cancer, dying within six months of diagnosis and treatment at a CCLG centre. Potential exists for more children with leukaemias and lymphomas to die at home or in a hospice. Further research is required to understand why more children with Asian or Black ethnicity or from a deprived area die in hospital. Also, more detailed investigations will be conducted into the use of hospital services for children with each type of cancer, in particular comparing children who survive with those who die within five years of diagnosis. Overall, the gold standard of care would be for health-care teams to offer children and their families comprehensive options on place of death and the ability to alter decisions as circumstances change.

Funding

The authors thank Children with Leukaemia for funding this research. The Childhood Cancer Research Group receives funding from the Department of Health, and the views expressed in this paper are those of the authors and not necessarily those of the Department of Health.

Conflict of interest statement

None declared.

Acknowledgements

We thank the Children's Cancer and Leukaemia Group, the UK Association of Cancer Registries and the Clinical Trial Service Unit for collecting childhood cancer data of such high quality for so many years. We also thank Northgate Information

Solutions for coordinating Hospital Episode Statistics data and service on behalf of the NHS Information Centre.

REFERENCES

- Stiller C. Childhood cancer in Britain: incidence, survival, mortality. Oxford: Oxford University Press; 2007.
- Shah A, Stiller CA, Kenward MG, et al. Childhood leukaemia: long-term excess mortality and the proportion 'cured'. Br J Cancer 2008;99(1):219–23.
- Association for Children with Life-threatening or Terminal Conditions and Their Families (ACT). A guide to the development of children's palliative care services. 2nd ed. Bristol: ACT; 2003.
- Mash E, Lloyd-Williams M. A survey of the services provided by children's hospices in the United Kingdom. Support Care Cancer 2006;14(12):1169–72.
- 5. Craft A, Killen S. Palliative care services for children and young people in England. London: Department of Health; 2007.
- Department of Health. National Framework for Children, Young People and Maternity Services. Commissioning children's and young people's palliative care services. Every child matters – change for children. London: Department of Health; 2005.
- 7. Vickers J, Thompson A, Collins GS, et al. Place and provision of palliative care for children with progressive cancer: a study by the Paediatric Oncology Nurses' Forum/United Kingdom Children's Cancer Study Group Palliative Care Working Group. J Clin Oncol 2007;25(28):4472–6.

- 8. Steliarova-Foucher E, Stiller C, Lacour B, et al. International Classification of Childhood Cancer. 3rd ed. Cancer 2005;103(7):1457–67.
- Neighbourhood Renewal Unit Office for the Deputy Prime Minister. The English Indices of Deprivation 2004 (revised). London: Neighbourhood Renewal Unit, Office for the Deputy Prime Minister; 2004.
- Stata Statistical Software: Release 11 [computer program].
 College Station, TX: StataCorp LP; 2009.
- 11. Higginson IJ, Thompson M. Children and young people who die from cancer: epidemiology and place of death in England (1995–1999). BMJ 2003;327(7413):478–9.
- ISD Scotland. Cancer: Statistical Publication Notice, 27 April 2010 – place of death from cancer. Edinburgh, ISD Scotland; 2010
- Fraser LK, Miller M, McKinney PA, et al. Referral to a specialist paediatric palliative care service in oncology patients. *Pediatr Blood Cancer* 2011;56:677–80.
- Goldman A, Beardsmore S, Hunt J. Palliative care for children with cancer – home, hospital, or hospice? Arch Dis Child 1990;65(6):641–3.
- 15. Children's Cancer and Leukaemia Group. Choices. When it seems there are none. Suggestions for parents when curative treatment for their child is no longer an option. London, UK: Leukaemia Research and Cancer Research; 2007.
- Koffman J, Burke G, Dias A, et al. Demographic factors and awareness of palliative care and related services. Palliat Med 2007;21(2):145–53.